
Image Inpainting

Marcelo Bertalmio and Guillermo Sapiro�

Electrical and Computer Engineering, University of Minnesota
Vicent Caselles and Coloma Ballester

Escola Superior Politecnica, Universitat Pompeu Fabra

Abstract

Inpainting, the technique of modifying an image in an undetectable
form, is as ancient as art itself. The goals and applications of in-
painting are numerous, from the restoration of damaged paintings
and photographs to the removal/replacement of selected objects. In
this paper, we introduce a novel algorithm for digital inpainting of
still images that attempts to replicate the basic techniques used by
professional restorators. After the user selects the regions to be
restored, the algorithm automatically fills-in these regions with in-
formation surrounding them. The fill-in is done in such a way that
isophote lines arriving at the regions’ boundaries are completed in-
side. In contrast with previous approaches, the technique here in-
troduced does not require the user to specify where the novel in-
formation comes from. This is automatically done (and in a fast
way), thereby allowing to simultaneously fill-in numerous regions
containing completely different structures and surrounding back-
grounds. In addition, no limitations are imposed on the topology of
the region to be inpainted. Applications of this technique include
the restoration of old photographs and damaged film; removal of su-
perimposed text like dates, subtitles, or publicity; and the removal
of entire objects from the image like microphones or wires in spe-
cial effects.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—; I.3.4 [Computer Graphics]: Graphics Utilities—
; I.4.4 [Image Processing and Computer Vision]: Restoration—;
I.4.9 [Image Processing and Computer Vision]: Applications—;

Keywords: Image restoration, inpainting, isophotes, anisotropic
diffusion.

1 Introduction

The modification of images in a way that is non-detectable for an
observer who does not know the original image is a practice as old
as artistic creation itself. Medieval artwork started to be restored as
early as the Renaissance, the motives being often as much to bring
medieval pictures “up to date” as to fill in any gaps [1, 2]. This
practice is called retouchingor inpainting. The object of inpainting
is to reconstitute the missing or damaged portions of the work, in
order to make it more legible and to restore its unity [2].

The need to retouch the image in an unobtrusive way extended
naturally from paintings to photography and film. The purposes
remain the same: to revert deterioration (e.g., cracks in photographs
or scratches and dust spots in film), or to add or remove elements

�Electrical and Computer Engineering, University of Minnesota, Min-
neapolis, MN 55455, USA, fmarcelo,guilleg@ece.umn.edu

(e.g., removal of stamped date and red-eye from photographs, the
infamous “airbrushing” of political enemies [3]).

Digital techniques are starting to be a widespread way of per-
forming inpainting, ranging from attempts to fully automatic detec-
tion and removal of scratches in film [4, 5], all the way to software
tools that allow a sophisticated but mostly manual process [6].

In this article we introduce a novel algorithm for automatic digi-
tal inpainting, being its main motivation to replicate the basic tech-
niques used by professional restorators. At this point, the only user
interaction required by the algorithm here introduced is to mark
the regions to be inpainted. Although a number of techniques ex-
ist for the semi-automatic detection of image defects (mainly in
films), addressing this is out of the scope of this paper. Moreover,
since the inpainting algorithm here presented can be used not just
to restore damaged photographs but also to remove undesired ob-
jects and writings on the image, the regions to be inpainted must be
marked by the user, since they depend on his/her subjective selec-
tion. Here we are concerned on how to “fill-in” the regions to be
inpainted, once they have been selected.1 Marked regions are au-
tomatically filled with the structure of their surrounding, in a form
that will be explained later in this paper.

2 Related work and our contribution

We should first note that classical image denoising algorithms do
not apply to image inpainting. In common image enhancement ap-
plications, the pixels contain both information about the real data
and the noise (e.g., image plus noise for additive noise), while in
image inpainting, there is no significant information in the region to
be inpainted. The information is mainly in the regions surrounding
the areas to be inpainted. There is then a need to develop specific
techniques to address these problems.

Mainly three groups of works can be found in the literature re-
lated to digital inpainting. The first one deals with the restoration
of films, the second one is related to texture synthesis, and the third
one, a significantly less studied class though very influential to the
work here presented, is related to disocclusion.

Kokaram et al. [5] use motion estimation and autoregressive
models to interpolate losses in films from adjacent frames. The
basic idea is to copy into the gap the right pixels from neighboring
frames. The technique can not be applied to still images or to films
where the regions to be inpainted span many frames.

1In order to study the robustness of the algorithm here proposed, and not
to be too dependent on the marking of the regions to be inpainted, we mark
them in a very rough form with any available paintbrush software. Marking
these regions in the examples reported in this paper just takes a few seconds
to a non-expert user.

417

2

Hirani and Totsuka [7] combine frequency and spatial domain in-
formation in order to fill a given region with a selected texture. This
is a very simple technique that produces incredible good results. On
the other hand, the algorithm mainly deals with texture synthesis
(and not with structured background), and requires the user to select
the texture to be copied into the region to be inpainted. For images
where the region to be replaced covers several different structures,
the user would need to go through the tremendous work of segment-
ing them and searching corresponding replacements throughout the
picture. Although part of this search can be done automatically, this
is extremely time consuming and requires the non-trivial selection
of many critical parameters, e.g., [8]. Other texture synthesis algo-
rithms, e.g., [8, 9, 10], can be used as well to re-create a pre-selected
texture to fill-in a (square) region to be inpainted.

In the group of disocclusion algorithms, a pioneering work is
described in [11]. The authors presented a technique for removing
occlusions with the goal of image segmentation.2 The basic idea is
to connect T-junctions at the same gray-level with elastica minimiz-
ing curves. The technique was mainly developed for simple images,
with only a few objects with constant gray-levels, and will not be
applicable for the examples with natural images presented later in
this paper. Masnou and Morel [12] recently extended these ideas,
presenting a very inspiring general variational formulation for dis-
occlusion and a particular practical algorithm (not entirely based
on PDE’s) implementing some of the ideas in this formulation. The
algorithm performs inpainting by joining with geodesic curves the
points of the isophotes (lines of equal gray values) arriving at the
boundary of the region to be inpainted. As reported by the authors,
the regions to be inpainted are limited to having simple topology,
e.g., holes are not allowed.3 In addition, the angle with which the
level lines arrive at the boundary of the inpainted region is not (well)
preserved: the algorithm uses straight lines to join equal gray value
pixels. These drawbacks, which will be exemplified later in this
paper, are solved by our algorithm. On the other hand, we should
note that this is the closest technique to ours and has motivated in
part and inspired our work.

2.1 Our contribution

Algorithms devised for film restoration are not appropriate for our
application since they normally work on relatively small regions
and rely on the existence of information from several frames.

On the other hand, algorithms based on texture synthesis can fill
large regions, but require the user to specify what texture to put
where. This is a significant limitation of these approaches, as may
be seen in examples presented later in this paper, where the region
to be inpainted is surrounded by hundreds of different backgrounds,
some of them being structure and not texture.

The technique we propose does not require any user interven-
tion, once the region to be inpainted has been selected. The algo-
rithm is able to simultaneously fill regions surrounded by different
backgrounds, without the user specifying “what to put where.” No
assumptions on the topology of the region to be inpainted, or on
the simplicity of the image, are made. The algorithm is devised
for inpainting in structured regions (e.g., regions crossing through
boundaries), though it is not devised to reproduce large textured
areas. As we will discuss later, the combination of our proposed
approach with texture synthesis techniques is the subject of current
research.

2Since the region to be inpainted can be considered as occluding objects,
removing occlusions is analogous to image inpainting.

3This is not intrinsic to the general variational formulation they propose,
only to the specific discrete implementation they perform.

3 The digital inpainting algorithm

3.1 Fundamentals

Let
 stand for the region to be inpainted, and @
 for its boundary
(note once again that no assumption on the topology of
 is made).
Intuitively, the technique we propose will prolong the isophote lines
arriving at @
, while maintaining the angle of “arrival.” We pro-
ceed drawing from @
 inward in this way, while curving the pro-
longation lines progressively to prevent them from crossing each
other.

Before presenting the detailed description of this technique, let
us analyze how experts inpaint. Conservators at the Minneapolis
Institute of Arts were consulted for this work and made it clear to
us that inpainting is a very subjective procedure, different for each
work of art and for each professional. There is no such thing as
“the” way to solve the problem, but the underlying methodology is
as follows: (1.) The global picture determines how to fill in the gap,
the purpose of inpainting being to restore the unity of the work; (2.)
The structure of the area surrounding
 is continued into the gap,
contour lines are drawn via the prolongation of those arriving at
@
; (3.) The different regions inside
, as defined by the contour
lines, are filled with color, matching those of @
; and (4.) The small
details are painted (e.g. little white spots on an otherwise uniformly
blue sky): in other words, “texture” is added.

A number of lessons can immediately be learned from these ba-
sic inpainting rules used by professionals. Our algorithm simulta-
neously, and iteratively, performs the steps (2.) and (3.) above.4 We
progressively “shrink” the gap
 by prolonging inward, in a smooth
way, the lines arriving at the gap boundary @
.

3.2 The inpainting algorithm

We need to translate the manual inpainting concepts expressed
above into a mathematical and algorithmic language. We proceed
to do this now, presenting the basic underlying concepts first. The
implementation details are given in the next section.

Let I0(i; j) : [0;M] � [0; N] ! IR, with [0;M] � [0; N] �
IN � IN , be a discrete 2D gray level image. From the descrip-
tion of manual inpainting techniques, an iterative algorithm seems
a natural choice. The digital inpainting procedure will construct
a family of images I(i; j; n) : [0;M] � [0; N] � IN ! IR such
that I(i; j; 0) = I0(i; j) and limn!1I(i; j; n) = IR(i; j), where
IR(i; j) is the output of the algorithm (inpainted image). Any gen-
eral algorithm of that form can be written as

In+1(i; j) = In(i; j) +�tInt (i; j); 8(i; j) 2
 (1)

where the superindex n denotes the inpainting “time” n, (i; j) are
the pixel coordinates, �t is the rate of improvement and Int (i; j)
stands for the update of the image In(i; j). Note that the evolution
equation runs only inside
, the region to be inpainted.

With this equation, the image In+1(i; j) is an improved version
of In(i; j), with the “improvement” given by Int (i; j). As n in-
creases, we achieve a better image. We need now to design the
update Int (i; j).

As suggested by manual inpainting techniques, we need to con-
tinue the lines arriving at the boundary @
 of the region
 to be
inpainted (see point (2) in Section 3.1). In other words, we need
to smoothly propagate information from outside
 into
 (points
(2) and (3) in Section 3.1). Being Ln(i; j) the information that
we want to propagate, and

�!
N
n

(i; j) the propagation direction, this
means that we must have

4In the discussion section we will argue how both steps can be performed
separately, and we will also discuss step (4.).

418

3

Figure 1: Propagation direction as the normal to the signed distance
to the boundary of the region to be inpainted.

Figure 2: Unsuccessful choice of the information propagation di-
rection. Left: detail of the original image, region to be inpainted is
in white. Right: restoration.

Int (i; j) =
��!
�Ln(i; j) �

�!
N
n

(i; j); (2)

where
��!
�Ln(i; j) is a measure of the change in the informa-

tion Ln(i; j).5 With this equation, we estimate the information
Ln(i; j) of our image and compute its change along the

�!
N direc-

tion. Note that at steady state, that is, when the algorithm con-
verges, In+1(i; j) = In(i; j) and from (1) and (2) we have that
��!
�Ln(i; j) �

�!
N
n

(i; j) = 0, meaning exactly that the information L
has been propagated in the direction

�!
N .

What is left now is to express the information L being propa-
gated and the direction of propagation

�!
N .

Since we want the propagation to be smooth, Ln(i; j) should
be an image smoothness estimator. For this purpose we may use
a simple discrete implementation of the Laplacian: Ln(i; j) :=
Inxx(i; j) + Inyy(i; j) (subscripts represent derivatives in this case).
Other smoothness estimators might be used, though satisfactory re-
sults were already obtained with this very simple selection.

Then, we must compute the change
��!
�Ln(i; j) of this value along

�!
N . In order to do this we must first define what the direction

�!
N

for the 2D information propagation will be. One possibility is to
define

�!
N as the normal to the signed distance to @
, i.e., at each

point (i; j) in
 the vector
�!
N (i; j) will be normal to the “shrinked

version” of @
 to which (i; j) belongs, see Figure 1. This choice
is motivated by the belief that a propagation normal to the bound-
ary would lead to the continuity of the isophotes at the boundary.
Instead, what happens is that the lines arriving at @
 curve in or-
der to align with

�!
N , see Figure 2. This is of course not what we

expect. Note that the orientation of @
 is not intrinsic to the image
geometry, since the region to be inpainted is arbitrary.

If isophotes tend to align with
�!
N , the best choice for

�!
N is then

the isophotes directions. This is a bootstrapping problem: hav-
ing the isophotes directions inside
 is equivalent to having the
inpainted image itself, since we can easily recover the gray level
image from its isophote direction field (see the discussion section
and [13]).

5Borrowing notation from continuous mathematics, we could also write
��!
�Ln(i; j) as rL.

We use then a time varying estimation of the isophotes direc-
tion field: for any given point (i; j), the discretized gradient vector
rIn(i; j) gives the direction of largest spatial change, while its
90 degrees rotation r?In(i; j) is the direction of smallest spatial
change, so the vectorr?In(i; j) gives the isophotes direction. Our
field

�!
N is then given by the time-varying

�!
N (i; j; n) = r

?In(i; j).
We are using a time-varying estimation that is coarse at the begin-
ning but progressively achieves the desired continuity at @
, in-
stead of a fixed field

�!
N (i; j) that would imply to know the direc-

tions of the isophotes from the start.
Note that the direction field is not normalized, its norm is the

norm of the gradient of In(i; j). This choice helps in the numerical
stability of the algorithm, and will be discussed in the following
subsection.

Since we are performing inpainting along the isophotes, it is ir-
relevant if r?In(i; j) is obtained as a clockwise or counterclock-
wise rotation of rIn(i; j). In both cases, the change of In(i; j)
along those directions should be minimum.

Recapping, we estimate a variation of the smoothness, given by
a discretization of the 2D Laplacian in our case, and project this
variation into the isophotes direction. This projection is used to
update the value of the image inside the region to be inpainted.

To ensure a correct evolution of the direction field, a diffusion
process is interleaved with the image inpainting process described
above.6 That is, every few steps (see below), we apply a few itera-
tions of image diffusion. This diffusion corresponds to the periodi-
cal curving of lines to avoid them from crossing each other, as was
mentioned in Section 3.1. We use anisotropic diffusion, [14, 15],
in order to achieve this goal without losing sharpness in the recon-
struction. In particular, we apply a straightforward discretization of
the following continuous-time/continuous-space anisotropic diffu-
sion equation:

@I

@t
(x; y; t) = g�(x; y)�(x; y; t) jrI(x; y; t)j ; 8(x; y) 2

� (3)

where
� is a dilation of
 with a ball of radius �, � is the Euclidean
curvature of the isophotes of I and g�(x; y) is a smooth function in

� such that g�(x; y) = 0 in @
�, and g�(x; y) = 1 in
 (this is a
way to impose Dirichlet boundary conditions for the equation (3)).7

3.3 Discrete scheme and implementation details

The only input to our algorithm are the image to be restored and
the mask that delimits the portion to be inpainted. As a preprocess-
ing step, the wholeoriginal image undergoes anisotropic diffusion
smoothing. The purpose of this is to minimize the influence of
noise on the estimation of the direction of the isophotes arriving at
@
. After this, the image enters the inpainting loop, where only
the values inside
 are modified. These values change according
to the discrete implementation of the inpainting procedure, which
we proceed to describe. Every few iterations, a step of anisotropic
diffusion is applied (a straightforward, central differences imple-
mentation of (3) is used; for details see [14, 15]). This process is
repeated until a steady state is achieved.

Let In(i; j) stand for each one of the image pixels inside the
region
 at the inpainting “time” n. Then, the discrete inpainting
equation borrows from the numerical analysis literature and is given
by

In+1(i; j) = In(i; j) +�tInt (i; j); 8(i; j) 2
 (4)

6We can also add the diffusion as an additional term in In
t
(i; j), the

results being very similar.
7Other filters, e.g., form mathematical morphology, can be applied as

well, though we found the results obtained with this equation satisfactory.

419

4

where

Int (i; j) =

��!
�Ln(i; j) �

�!
N (i; j; n)���!N (i; j; n)

��
!
jrIn(i; j)j ; (5)

��!
�Ln(i; j) := (Ln(i+1; j)�Ln(i�1; j); Ln(i; j+1)�Ln(i; j�1));

(6)

Ln(i; j) = Inxx(i; j) + Inyy(i; j); (7)

�!
N (i; j; n)���!N (i; j; n)

�� := (�Iny (i; j); I
n

x (i; j))p
(Inx (i; j))2 + (Iny (i; j))2

; (8)

�n(i; j) =
��!
�Ln(i; j) �

�!
N (i; j; n)���!N (i; j; n)

�� ; (9)

and

jrIn(i; j)j =

8><
>:
p

(In
xbm

)2 + (In
xfM

)2 + (In
ybm

)2 + (In
yfM

)2;

when �n > 0p
(In
xbM

)2 + (In
xfm

)2 + (In
ybM

)2 + (In
yfm

)2;

when �n < 0
(10)

We first compute the 2D smoothness estimation L in (7) and the
isophote direction

�!
N=
���!N �� in (8). Then in (9) we compute �n, the

projection of
�!
�L onto the (normalized) vector

�!
N , that is, we com-

pute the change of L along the direction of
�!
N . Finally, we multiply

�n by a slope-limitedversion of the norm of the gradient of the im-
age, jrIj, in (10). 8 A central differences realization would turn the
scheme unstable, and that is the reason for using slope-limiters. The
subindexes b and f denote backward and forward differences re-
spectively, while the subindexes m and M denote the minimum or
maximum, respectively, between the derivative and zero (we have
omitted the space coordinates (i; j) for simplicity); see [16] for de-
tails. Finally, let us note that the choice of a non-normalized field
�!
N instead of a normalized version of it allows for a simpler and
more stable numerical scheme; see [17, 18].

Note once again that when the inpainting algorithm arrives
to steady state, that is, It = 0, we have geometrically solved
r(Smoothness) �r?I = 0, meaning that the “smoothness” is con-
stant along the isophotes. 9

When applying equations (4)-(10) to the pixels in the border @

of the region
 to be inpainted, known pixels from outside this re-
gion are used. That is, conceptually, we compute equations (4)-(10)
in the region
� (an � dilation of
), although we update the values
only inside
 (that is, (4) is applied only inside
). The information
in the narrow band
� �
 is propagated inside
. Propagation of
this information, both gray-values and isophotes directions, is fun-
damental for the success of the algorithm.

In the restoration loop we perform A steps of inpainting with
(4), then B steps of diffusion with (3), again A steps of (4), and
so on. The total number of steps is T . This number may be pre-
established, or the algorithm may stop when changes in the image
are below a given threshold. The values we use are: A = 15; B =
2, at speed �t = 0:1. The value of T depends on the size of
.

8Note that jrIj = jr?Ij.
9This type of information propagation is related and might be applicable

to velocity fields extension in level-set techniques [19, 20].

Figure 3: Relation between the (R;G;B) color model and the one
used in this article,(�; sin�; sin).

If
 is of considerable size, a multiresolutionapproach is used to
speed-up the process.10

Color images are considered as a set of three images, and the
above described technique is applied independently to each one.
To avoid the appearance of spurious colors, we use a color model
which is very similar to the LUV model, with one luminance and
two chroma components. See Figure 3.

4 Results

The CPU time required for inpainting depends on the size of

. In all the color examples here presented, the inpainting pro-
cess was completed in less than 5 minutes (for the three color
planes), using non-optimized C++ code running on a PentiumII
PC (128Mb RAM, 300MHz) under Linux. All the examples use
images available from public databases over the Internet. The
main examples here presented, and additional ones, can be seen at
http://www.ece.umn.edu/users/marcelo/restoration.html, where in
addition to the original and inpainted images reproduced below, the
evolution process can be observed.

Figure 4 shows, on the left, a synthetic image with the region to
inpaint in white. Here
 is large (30 pixels in diameter) and con-
tains a hole. The inpainted reconstruction is shown on the right.
Notice that contours are recovered, joining points from the inner
and outer boundaries. Also, these reconstructed contours follow
smoothly the direction of the isophotes arriving at @
 (the algo-
rithm reported in [12] will fail with this type of data).

Figure 5 shows a deteriorated B&W image (first row) and its re-
construction (second row). As in all the examples in this article,
the user only supplied the “mask” image (last row). This mask
was drawn manually, using a paintbrush-like program. The vari-
ables were set to the values specified in the previous section, and
the number of iterations T was set to 3000. When multiresolution
is not used, the CPU time required by the inpainting procedure was
approximately 7 minutes. With a 2-level multiresolution scheme,
only 2 minutes were needed. Observe that details in the nose and
right eye of the middle girl could not be completely restored. This
is in part due to the fact that the mask covers most of the relevant in-
formation, and there is not much to be done without the use of high
level prior information (e.g., the fact that it is an eye). These minor
errors can be corrected by the manual procedures mentioned in the
introduction, and still the overall inpainting time would be reduced
by orders of magnitude. This example was tested and showed to be
robust to initial conditions inside the region to be inpainted.

Figure 6 shows a vandalized image and its restoration, followed
by an example where overimposed text is removed from the image.

10We basically use the converged result of a lower resolution stage to
initialize the higher one, as classically done in image processing.

420

5

Figure 4: Synthetic example:
 is shown in white. Topology is
not an issue, and the recovered contours smoothly continue the
isophotes.

These are typical examples where texture synthesis algorithms as
those described in the introduction can not be used, since the num-
ber of different regions to be filled-in is very large.

The next figure shows the progressive nature of the algorithm,
several intermediate steps of the inpainting procedure are shown,
removing painted text over a natural scene.

Finally, Figure 8 shows an entertainment application. The
bungee cord and the knot tying the man’s legs have been removed.
Given the size of
 a 2-level multiresolution scheme was used.
Here it becomes apparent that it is the user who has to supply the
algorithm with the masking image, since the choice of the region to
inpaint is completely subjective.

5 Conclusions and future work

In this paper we have introduced a novel algorithm for image in-
painting that attempts to replicate the basic techniques used by pro-
fessional restorators. The basic idea is to smoothly propagate infor-
mation from the surrounding areas in the isophotes direction. The
user needs only to provide the region to be inpainted, the rest is
automatically performed by the algorithm in a few minutes. The
inpainted images are sharp and without color artifacts. The exam-
ples shown suggest a wide range of applications like restoration
of old photographs and damaged film, removal of superimposed
text, and removal of objects. The results can either be adopted as
a final restoration or be used to provide an initial point for manual
restoration, thereby reducing the total restoration time by orders of
magnitude.

One of the main problems with our technique is the reproduction
of large textured regions, as can be seen in Figure 9. The algorithm
here proposed is currently being tested in conjunction with texture
synthesis ideas to address this issue. We are mainly investigation
the combination of this approach with the reaction-diffusion ideas
of Kass and Witkin and of Turk. An ideal algorithm should be able
to automatically switch between textured and geometric areas, and
select the best suited technique for each region.

We would also like to investigate how to inpaint from partial
degradation. In the example of the old photo for example, ideally
the mask should not be binary, since some underlying information
exists in the degraded areas.

The inpainting algorithm here presented has been clearly mo-
tivated by and has borrowed from the intensive work on the use
of Partial Differential Equations (PDE’s) in image processing and
computer vision. When “blindly” letting the grid go to zero, the
inpainting technique in equations (4)-(10) naively resembles a third
order equation, for which too many boundary conditions are im-
posed (being all of them essential). Although theoretical results for
high order equations are available, e.g., [21], and some properties
like preservation of the image moments can be immediately proved
for our corresponding equation (this was done by A. Bertozzi), fur-

ther formal study of our “high order equation” is needed (see also
[22, 23]). Nevertheless, this suggests the investigation of the use of
lower, second order, PDE’s to address the inpainting problem. We
can split the inpainting problem into two coupled variational for-
mulations, one for the isophotes direction (point (2) in Section 3.1)
and one for the gray-values, consistent with the estimated directions
(point (3) in Section 3.1). The corresponding gradient descent flows
will give two coupled second order PDE’s for which formal results
regarding existence and uniqueness of the solutions can be shown.
This is reported in [24].

Acknowledgments

This work started when the authors were visiting the Institute Henri
Poincare in Paris, France. We thank the organizers of the quarter
on “Mathematical Questions in Signal and Image Processing” and
the Institute for their hospitality and partial financial support. We
would like to thank Tom Robbins and Elizabeth Buschor from the
Upper Midwest Conservation Association for their help in linking
our work with actual art restoration and conservation. Amy Miller,
of Photo-Medic, kindly provided the damaged photograph shown in
the examples. We also thank Dr. Santiago Betelu, Prof. Stan Osher,
Prof. Eero Simoncelli, and Prof. Andrea Bertozzi for very interest-
ing discussions and feedback. The reviewers provided many useful
ideas. This work was partially supported by a grant from the Office
of Naval Research ONR-N00014-97-1-0509, the Office of Naval
Research Young Investigator Award, the Presidential Early Career
Awards for Scientists and Engineers (PECASE), a National Science
Foundation CAREER Award, by the National Science Foundation
Learning and Intelligent Systems Program (LIS), and Universidad
de la Republica (Uruguay).

References

[1] S. Walden. The Ravished Image. St. Martin’s Press, New York,
1985.

[2] G. Emile-Male. The Restorer’s Handbook of Easel Painting.
Van Nostrand Reinhold, New York, 1976.

[3] D. King. The Commissar Vanishes. Henry Holt and Company,
1997.

[4] A.C. Kokaram, R.D. Morris, W.J. Fitzgerald, P.J.W. Rayner.
Detection of missing data in image sequences. IEEE Transac-
tions on Image Processing 11(4), 1496-1508, 1995.

[5] A.C. Kokaram, R.D. Morris, W.J. Fitzgerald, P.J.W. Rayner.
Interpolation of missing data in image sequences. IEEE Trans-
actions on Image Processing 11(4), 1509-1519, 1995.

[6] C. Braverman. Photoshop retouching handbook. IDG Books
Worldwide, 1998.

[7] A. Hirani and T. Totsuka. Combining Frequency and spatial
domain information for fast interactive image noise removal.
Computer Graphics, pp. 269-276, SIGGRAPH 96, 1996.

[8] A. Efros and T. Leung, “Texture synthesis by non-parametric
sampling,” Proc. IEEE International Conference Computer Vi-
sion, pp. 1033-1038, Corfu, Greece, September 1999.

[9] D. Heeger and J. Bergen. Pyramid based texture analy-
sis/synthesis. Computer Graphics, pp. 229-238, SIGGRAPH
95, 1995.

421

6

[10] E. Simoncelli and J. Portilla. Texture characterization via
joint statistics of wavelet coefficient magnitudes. 5th IEEE Int’l
Conf. on Image Processing, Chicago, IL. Oct 4-7, 1998.

[11] M. Nitzberg, D. Mumford, and T. Shiota, Filtering, Segmen-
tation, and Depth, Springer-Verlag, Berlin, 1993.

[12] S. Masnou and J.M. Morel. Level-lines based disocclusion.
5th IEEE Int’l Conf. on Image Processing, Chicago, IL. Oct
4-7, 1998.

[13] C. Kenney and J. Langan. A new image processing primitive:
reconstructing images from modified flow fields. University of
California Santa Barbara Preprint, 1999.

[14] P. Perona and J. Malik Scale-space and edge detection using
anisotropic diffusion. IEEE-PAMI 12, pp. 629-639, 1990.

[15] L. Alvarez, P.L. Lions, J.M. Morel. Image selective smoothing
and edge detection by nonlinear diffusion. SIAM J. Numer.
Anal. 29, pp. 845-866, 1992.

[16] S. Osher and J. Sethian. Fronts propagating with curvature
dependent speed: algorithms based on Hamilton-Jacobi for-
mulations. Journal of Computational Physics, 79:12-49, 1988.

[17] A. Marquina and S. Osher. Explicit algorithms for a new time
dependent model based on level set motion for nonlinear de-
bluring and noise removal. UCLA CAM Report 99-5, January
1999.

[18] L. Rudin, S. Osher and E. Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D, 60, pp. 259-268,
1992.

[19] S. Osher, personal communication, October 1999.

[20] H. K. Zhao, T. Chan, B. Merriman, and S. Osher, “A varia-
tional level-set approach to multiphase motion,” J. of Compu-
tational Physics127, pp. 179-195, 1996.

[21] A. Bertozzi The mathematics of moving contact lines in thin
liquid films. Notices Amer. Math. Soc., Volume 45, Number 6,
pp. 689-697, June/July 1998.

[22] J. Tumblin and G. Turk, “LCIS: A boundary hierarchy for
detail-preserving contrast reduction,” Computer Graphics, pp.
83-90, SIGGRAPH 99, 1999.

[23] T. Chan and J. Shen, “Mathematical models for local deter-
ministic inpaintings,” UCLA CAM TR00-11, March 2000.

[24] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J.
Verdera, “Filling-in by joint interpolation of vector fields and
grey levels,” University of Minnesota IMA TR, April 2000.

Figure 5: Restoration of an old photograph.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
 SIGGRAPH 2000, New Orleans, LA USA
 © ACM 2000 1-58113-208-5/00/07 ...$5.00

422

7

Figure 6: Restoration of a color image and removal of superimposed text.

Figure 7: Progressive nature of the algorithm. Several intermediate steps of the reconstruction are shown.

423

8

Figure 8: The bungee cord and the knot tying the man’s feet have been removed.

Figure 9: Limitations of the algorithm: texture is not reproduced.

424

